
- 12 -

I have been programming since
I was 8. Long before picking
up any book on magick or
arcane occult arts, I started
with BASIC, moving onto Turbo
Pascal, then emerging into
the UNIX hacker world of C,
Perl and assembler language
– using the internet before
internet was available as a
consumer product. In those
days, everything online was
meaningful, as only professors,
geeks and hackers had access
to the hidden online world. It
became an escape from reality.
To me, making computer
programs has always been all
about striving for perfection,
a way to abstract the process
of creation and manifestation
within a limited universe,
yet one that resembles the
large one that surrounds us.
In theory, if I understood one
of them, the other would be
understood too.

There is a vast difference
between knowledge and
experience. Knowledge lets
you deduce the right thing to
do, expertise makes the right
thing a reflex, hardly requiring
conscious thought at all. When
one thinks about a computer

operating system, one
thought that first strikes
most is the knowledge
required for specialists
to be working in this field.
But the esoteric side of
the Unix culture reveals
a philosophy, tradition,
and design that transcend
technical boundaries. Unix
was created by humans to
solve problems. It thus
emanated from humans, thus
it is a whole little universe
that has been engineered,

that has its creation, myths,
history, wars and arts and all
the things that belong in a
universe but scaled down, in a
sense, to allow it to resemble
a reflection of the higher.

How does this relate to
the magickian? Well, if
you consider an operating
system the universe, then,
the programming language
becomes the logos, i.e. the
words that create matter,
substance, logic and meaning
and dimensions. Here, both
philosophy, symbols, logic
and rules come into play. Even
though a programming language
has been perfected, it is only
as good as who is using it.

Many books have been written
on Unix, such titles as “The
Timeless Art of Building”
and “The Art of Computer
Programming”. Every branch
of engineering and design has
technical cultures. In most
kinds of engineering, the
unwritten traditions of the
field are parts of a working
practitioner’s education
as important as (and, as
experience grows, often more
important than) the official

© 2010 Frater E.A.S. - SRC&SSA

- 13 -

Splendor Solis - No. X - ! i d - 2010 A.D.

handbooks and textbooks. Senior
engineers develop huge bodies
of implicit knowledge, which
they pass to their juniors by
(as Zen Buddhists put it) “a
special transmission, outside
the scriptures”.

Genesis: Unix was born in 1969
(UNIX year zero is midnight,
January 1st, 1970, and time
is measured in the number of
seconds passed since then)
and has been in continuous
production ever since. UNIX
has evolved from big mainframes
onto normal PC and laptop
computers, with the advent of
Linux and Mac OS X. It sort
of represents an anti-culture
from Microsoft Windows.

The Unix philosophy is not
a formal design method. It
is pragmatic and grounded in
experience. It encourages
a sense of proportion and
skepticism – and shows both
by having a sense of (often
subversive) humour.

Looking at the whole, some
rules emanated. Here is a few
examples:

1: Rule of modularity: Write
simple parts connected by clean
interfaces.
2: Rule of Clarity: Clarity is
better than cleverness.
For those of you who like
Gematria, It is interesting
that the rule of Har-Par-Kraat
naturally falls on number
eleven, the number of Magick:
11: Rule of Silence: When a
program has nothing surprising
to say, it should say nothing.
16: Rule of Diversity: Distrust
all claims for the “One True
Way”.

17: Rule of Extensibility:
“Design for the future, because
it will be here sooner than
you think”.

If you are new to Unix,
these principles are worth
some meditation. If you are
a mystic or magickian, these
parables sound familiar. I
find it interesting to see how
once a totally new universe
is manifested from void, a
familiar pattern appears...

One interesting explanation
of the “Rule of Silence”
is explained by the fact
that Unix predates video
displays. On the old printing
terminals of 1969, each line
of unneccessary output was a
serious drain on the user’s
time. That constraint is gone,
but the practice has been kept.
The terseness of Unix programs
has lead to Unix’s success, in
many ways. When your program’s
output becomes another’s input,
it should be easy to pick up
the needed bits. Important
information should not be
mixed in with verbosity about
internal program behaviour.

To achieve enlightenment and
surcease from suffering, Zen
teaches detachment. The Unix
tradition teaches the value of
detachment from the particular,
accidental conditions under
which a design problem was
posed. Abstract. Simplify.
Generalize. Because we write
software to solve problems, we
cannot completely detach from
the problems – but it is well
worth the mental effort to see
how many preconceptions you
can throw away, and whether the
design becomes more compact

© 2010 Frater E.A.S. - SRC&SSA

#!/usr/bin/perl -w # camel code use strict;

 $_=’ev
 al(“seek\040D
 ATA,0, 0;”);foreach(1..3)
 {<DATA>;}my @camel1hump;my$camel;
 my$Camel ;while(<DATA>){$_=sprintf(“%-6
9s”,$_);my@dromedary 1=split(//);if(defined($
_=<DATA>)){@camel1hum p=split(//);}while(@dromeda
 ry1){my$camel1hump=0 ;my$CAMEL=3;if(defined($_=shif
 t(@dromedary1))&&/\S/){$camel1hump+=1<<$CAMEL;}
 $CAMEL--;if(d efined($_=shift(@dromedary1))&&/\S/){
 $camel1hump+=1 <<$CAMEL;}$CAMEL--;if(defined($_=shift(
 @camel1hump))&&/\S/){$camel1hump+=1<<$CAMEL;}$CAMEL--;if(
 defined($_=shift(@camel1hump))&&/\S/){$camel1hump+=1<<$CAME
 L;;}$camel.=(split(//,”\040..m`{/J\047\134}L^7FX”))[$camel1h
 ump];}$camel.=”\n”;}@camel1hump=split(/\n/,$camel);foreach(@
 camel1hump){chomp;$Camel=$_;y/LJF7\173\175`\047/\061\062\063\
 064\065\066\067\070/;y/12345678/JL7F\175\173\047`/;$_=reverse;
 print”$_\040$Camel\n”;}foreach(@camel1hump){chomp;$Camel=$_;y
 /LJF7\173\175`\047/12345678/;y/12345678/JL7F\175\173\0 47`/;
 $_=reverse;print”\040$_$Camel\n”;}’;;s/\s*//g;;eval; eval
 (“seek\040DATA,0,0;”);undef$/;$_=<DATA>;s/\s*//g;();;s
 ;^.*_;;;map{eval”print\”$_\””;}/.{4}/g; __DATA__ \124
 \1 50\145\040\165\163\145\040\157\1 46\040\1 41\0
 40\143\141 \155\145\1 54\040\1 51\155\ 141
 \147\145\0 40\151\156 \040\141 \163\16 3\
 157\143\ 151\141\16 4\151\1 57\156
 \040\167 \151\164\1 50\040\ 120\1
 45\162\ 154\040\15 1\163\ 040\14
 1\040\1 64\162\1 41\144 \145\
 155\14 1\162\ 153\04 0\157
 \146\ 040\11 7\047\ 122\1
 45\15 1\154\1 54\171 \040
 \046\ 012\101\16 3\16
 3\15 7\143\15 1\14
 1\16 4\145\163 \054
 \040 \111\156\14 3\056
 \040\ 125\163\145\14 4\040\
 167\1 51\164\1 50\0 40\160\
 145\162 \155\151
 \163\163 \151\1
 57\156\056

- 14 -

Splendor Solis - No. X - ! i d - 2010 A.D.

and orthogonal as you do
that. Possibilities for code
reuse often result, hence the
popular “Open Source” culture,
why rewrite code and reinvent
the wheel when you can recycle
80-90% of what has been made
before?

Jokes about the relationship
between Unix and Zen are a live
part of the Unix tradition as
well. This is not an accident.
One example is the poem:

“Debugging is twice as hard
as writing the code in the
first place. Therefore, if you
write the code as cleverly
as possible, you are, by
definition, not smart enough to
debug it.” –Brian Kernighan,
co-creator of Unix.

Here is an example:

while ($programming and not
$thinking)
{
 $enlightenment++;
}

This program will actually
run on a computer. Translated
into human language, the
program reads thus: “While
the condition of the value
of programming is true and
value of thinking is not true,
the value of enlightenment
increases by the factor of one
for each time continuously in
an infinite loop into eternity”.

Another example where
programming languages can
break out of the box of normal
time-space continuum is the
legendary “camel” code, made
in Perl:

© 2010 Frater E.A.S. - SRC&SSA

- 15 -

Splendor Solis - No. X - ! i d - 2010 A.D.

Of course this code actually
runs, too. What does it do?
You guessed it. It prints out
an identical camel.

It reminds me about the last
line of one section of the
loginataka, a discourse between
the student and the hacker on
how to become a hacker, much
resembling a dialogue with a
novise monk and the zen master
where the student is advised
to “travel in the way of the
camel”, meaning of course
the book about the “Perl”
programming language, which
has the image of a camel on
it. (All the O’Reilly books
have pictures of animals on
it, they can be considered the
bibles of Unix culture).

Speak, O Guru: What books should
I study? Are the O’Reilly
“Nutshell” guides a good place
to start?

O, Nobly Born: know that the
Nutshell Guides are but the
outermost Portal of the True
Enlightenment. Worthy are
they (and praise to the Name
of O’Reilly, whose books show
forth the Hacker Spirit in
numerous pleasing ways), but
the Nutshell Guides are only
the Beginning of the Road.

If thou desirest with True
Desire to tread the Path of
Wizardly Wisdom, first learn
the elementary Postures of
Kernighan & Pike’s The Unix
Programming Environment; then,
absorb the mantic puissance of
March Rochkind’s Advanced Unix
Programming and W. Richard
Stevens’s Advanced Programming
In The Unix Environment.	
Immerse thyself, then, in
the Pure Light of Maurice J.

Bach’s The Design Of The Unix
Operating System. Neglect not
the Berkelian Way; study also
The Design and Implementation
Of The 4.4BSD Operating System
by Kirk McKusick, Keith
Bostic et. al.			
For useful hints, tips, and
tricks, see Unix Power Tools,
Tim O’Reilly, ed. Consider
also the dark Wisdom to be
gained from contemplation of
the dread Portable C And Unix
Systems Programming, e’en
though it hath flowed from the
keyboard of the mad and doomed
Malvernite whom the world of
unknowing Man misnames “J.
E. Lapin”.				
These tomes shall instruct
thy Left Brain in the Nature
of the Unix System; to Feed
the other half of thy Head,
O Nobly Born, embrace also
the Lore of its Nurture. Don
Libes’s and Sandy Ressler’s
Life With Unix will set thy
Feet unerringly upon that
Path; take as thy Travelling
Companion the erratic but
illuminating compendium called
The New Hacker’s Dictionary
(Eric S. Raymond, ed., with
Guy L. Steele Jr.).

In this wise shalt thou travel
the Way of the Camel.”

	 --- From Eric S. Raymonds
“Loginataka”. http://catb.
org/~esr/faqs/loginataka.html
					
Unix uses Gematria too, in
files, where metadata in the
form of numbers are included.
One way to incorporate such
metadata, often associated
with Unix and its derivatives,
is just to store a “magic
number” inside the file itself.
Originally, this term was used
for a specific set of 2-byte

© 2010 Frater E.A.S. - SRC&SSA

- 16 -

Splendor Solis - No. X - ! i d - 2010 A.D.

identifiers at the beginning of
a file, but since any undecoded
binary sequence can be regarded
as a number, any feature of
a file format which uniquely
distinguishes it can be used
for identification. GIF images,
for instance, always begin
with the ASCII representation
of either GIF87a or GIF89a,
depending upon the standard
to which they adhere. Many file
types, most especially plain-
text files, are harder to spot
by this method. HTML files, for
example, might begin with the
string <html> (which is not case
sensitive), or an appropriate
document type definition that
starts with <!DOCTYPE, or,
for XHTML, the XML identifier,
which begins with <?xml. The
files can also begin with HTML
comments, random text, or
several empty lines, but still
be usable HTML.

The magic number approach
offers better guarantees
that the format will be
identified correctly, and can
often determine more precise
information about the file.
Since reasonably reliable
“magic number” tests can be
fairly complex, and each file
must effectively be tested
against every possibility
in the magic database, this
approach is relatively
inefficient, especially for
displaying large lists of
files (in contrast, filename and
metadata-based methods need
check only one piece of data,
and match it against a sorted
index). Also, data must be read
from the file itself, increasing
latency as opposed to metadata
stored in the directory. Where

filetypes don’t lend themselves
to recognition in this way,
the system must fall back
to metadata. It is, however,
the best way for a program to
check if a file it has been told
to process is of the correct
format: while the file’s name
or metadata may be altered
independently of its content,
failing a well-designed magic
number test is a pretty sure
sign that the file is either
corrupt or of the wrong type.
On the other hand a valid magic
number does not guarantee that
the file is not corrupt or of a
wrong type.

So-called “shebang” lines in
script files are a special
case of magic numbers. Here,
the magic number is human-
readable text that identifies
a specific command interpreter
and options to be passed to
the command interpreter. It is
written thus:

	 #!

And often used to tell
the system that a certain
programming language should
be used to interpret the file,
for instance the bash script
language or perl:

	 #!/usr/bin/perl

	 #!/bin/bash

So much for magick/occult
symbols in Unix.

Now, it would be intersting to
comment on Gnostic ideas and
the universe of Unix.

As a program is made through

© 2010 Frater E.A.S. - SRC&SSA

- 17 -

Splendor Solis - No. X - ! i d - 2010 A.D.

the programming code (logos)
the intention of the idea
(will) emerges.

Even the best software tools
tend to be limited by the
imaginations of their designers.
Nobody is smart enough to
optimize for everything, nor
to anticipate all the uses to
which their software might be
put. Designing rigid, closed
software that won’t talk to the
rest of the world is an unhealthy
form of arrogance.	

Therefore, the Unix tradition
includes a healthy mistrust
of “one true way” approaches
to software design or
implementation. It embraces
multiple languages, open
extensible systems, and
customization hooks everywhere.

One can say that a potent
manifestation of Gnostic
thought and the polarity of
systems can be best exampled
by Microsoft Windows, the most
prevalent operating system
among personal computers

still, which is a proprietary,
licenced, monopolised closed-
off system where the code is
hidden and you have to be a
hacker to “break out” of the
shell that imprison the user,
contrast this to Linux, an
incarnation of Unix that is
free, open, and where the
user can be instant in control
and see the source code of
any piece of the system. It
puts Adam back in the garden
of Eden, where time began
in year zero (1st of January
1970), where tapes of free and
open software were circulated
among hackers in Berkeley.
To this day, the utility for
compressing folders in Unix is
simply named “tar”, although
many has forgotten it once was
used mainly on Tape Archives..

by Frater E.A.S

© 2010 Frater E.A.S. - SRC&SSA

